Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 20 de 33
Фильтр
Добавить фильтры

Годовой диапазон
1.
J Cell Biochem ; 124(5): 656-673, 2023 05.
Статья в английский | MEDLINE | ID: covidwho-2314301

Реферат

It can be argued that the severity of COVID-19 has decreased in many countries. This could be a result of the broad coverage of the population by vaccination campaigns, which often reached an almost compulsory status in many places. Furthermore, significant roles were played by the multiple mutations in the body of the virus, which led to the emergence of several new SARS-CoV-2 variants with enhanced infectivity but dramatically reduced pathogenicity. However, the challenges associated with the development of various side effects and their persistence for long periods exceeding 20 months as a result of the SARS-CoV-2 infection, or taking available vaccines against it, are spreading horizontally and vertically in number and repercussions. For example, the World Health Organization announced that there are more than 17 million registered cases of long-COVID (also known as post-COVID syndrome) in the European Union countries alone. Furthermore, by using the PubMed search engine, one can find that more than 10 000 articles have been published focusing exclusively on long-COVID. In light of these enormous and ever-increasing numbers of cases and published articles, most of which are descriptive of the various long-COVID symptoms, the need to know the reasons behind this phenomenon raises several important questions. Is long-COVID caused by the continued presence of the virus or one/several of its components in the recovering individual body for long periods of time, which urges the body to respond in a way that leads to long-COVID development? Or are there some latent and limited reasons related to the recovering patients themselves? Or is it a sum of both? Many observations support a positive answer to the first question, whereas others back the second question but typically without releasing a fundamental reason/signal behind it. Whatever the answer is, it seems that the real reasons behind this widespread phenomenon remain unclear. This report opens a series of articles, in which we will try to shed light on the underlying causes that could be behind the long-COVID phenomenon.


Тема - темы
COVID-19 , Extracellular Vesicles , Humans , SARS-CoV-2 , COVID-19/epidemiology , Post-Acute COVID-19 Syndrome , Prevalence
2.
Front Cell Dev Biol ; 10: 1047094, 2022.
Статья в английский | MEDLINE | ID: covidwho-2309332

Реферат

Mesenchymal stem cells (MSCs) are crucial for tissue homeostasis and repair, secreting vesicles to the extracellular environment. Isolated exosomes were shown to affect angiogenesis, immunomodulation and tissue regeneration. Numerous efforts have been dedicated to describe the mechanism of action of these extracellular vesicles (EVs) and guarantee their safety, since the final aim is their therapeutic application in the clinic. The major advantage of applying MSC-derived EVs is their low or inexistent immunogenicity, prompting their use as drug delivery or therapeutic agents, as well as wound healing, different cancer types, and inflammatory processes in the neurological and cardiovascular systems. MSC-derived EVs display no vascular obstruction effects or apparent adverse effects. Their nano-size ensures their passage through the blood-brain barrier, demonstrating no cytotoxic or immunogenic effects. Several in vitro tests have been conducted with EVs obtained from different sources to understand their biology, molecular content, signaling pathways, and mechanisms of action. Application of EVs to human therapies has recently become a reality, with clinical trials being conducted to treat Alzheimer's disease, retina degeneration, and COVID-19 patients. Herein, we describe and compare the different extracellular vesicles isolation methods and therapeutic applications regarding the tissue repair and regeneration process, presenting the latest clinical trial reports.

3.
Biomolecules ; 13(2)2023 02 08.
Статья в английский | MEDLINE | ID: covidwho-2291758

Реферат

Both cardiovascular disease and cancer continue to be causes of morbidity and mortality all over the world. Preventing and treating heart disease in patients undergoing cancer treatment remain an important and ongoing challenge for improving the lives of cancer patients, but also for their survival. Despite ongoing efforts to improve patient survival, minimal advances have been made in the early detection of cardiovascular disease in patients suffering from cancer. Understanding the communication between cancer and cardiovascular disease can be based on a deeper knowledge of the molecular mechanisms that define the profile of the bilateral network and establish disease-specific biomarkers and therapeutic targets. The role of exosomes, microvesicles, and apoptotic bodies, together defined as extracellular vesicles (EVs), in cross talk between cardiovascular disease and cancer is in an incipient form of research. Here, we will discuss the preclinical evidence on the bilateral connection between cancer and cardiovascular disease (especially early cardiac changes) through some specific mediators such as EVs. Investigating EV-based biomarkers and therapies may uncover the responsible mechanisms, detect the early stages of cardiovascular damage and elucidate novel therapeutic approaches. The ultimate goal is to reduce the burden of cardiovascular diseases by improving the standard of care in oncological patients treated with anticancer drugs or radiotherapy.


Тема - темы
Cardiovascular Diseases , Exosomes , Extracellular Vesicles , Neoplasms , Humans , Biomarkers
4.
Sensors and Actuators B: Chemical ; 382, 2023.
Статья в английский | Scopus | ID: covidwho-2262046

Реферат

Extracellular vesicles (EVs) are nano-sized membranous particles secreted by cells. EVs have been classified into subpopulations according to their presumed biogenesis pathway, but their detailed biogenesis mechanisms still need to be fully elucidated. Enveloped viruses are another type of cell-derived nano-vesicles, and their biogenesis processes are much better known than that of EVs. Recently, studies on the similarity between enveloped viruses and EVs have been increasingly reported. The biogenesis of EVs could be better understood if these similarities are adequately investigated. In this study, we utilized a single vesicle imaging technique to visualize the protein expressions of individual nano-sized vesicles and analyzed expression patterns within single vesicles. Using this technique, we identified unique tetraspanin expression patterns in single EVs and that these patterns were closely related to their subcellular origins. The expression of CD9 or CD81 in EVs implied that they originated from the plasma membrane, and the expression of CD63 in EVs implied that they originated from endosomal organelles. We further analyzed the tetraspanin expressions of two different types of virus-like particles (VLPs) and demonstrated that the HIV-Gag-induced VLPs were more similar to EVs than SARS-CoV-2-NP/M/E-induced VLPs. In addition, HIV-Gag-GFP-expressing VLPs were highly colocalized with CD9, CD63, and CD81 signals, whereas SARS-CoV-NP-GFP-expressing VLPs were not. Based on these observations, we could assume that tetraspanin-expressing EVs might be produced through a similar process by which HIV is produced. © 2023

5.
Pharmaceutics ; 14(12)2022 Dec 02.
Статья в английский | MEDLINE | ID: covidwho-2268949

Реферат

The clinical translation of messenger mRNA (mRNA)-based therapeutics requires safe and effective delivery systems. Although considerable progress has been made on the development of mRNA delivery systems, many challenges, such as the dose-limiting toxicity and specific delivery to extrahepatic tissues, still remain. Cell-derived vesicles, a type of endogenous membranous particle secreted from living cells, can be leveraged to load mRNA during or after their biogenesis. Currently, they have received increasing interest for mRNA delivery due to their natural origin, good biocompatibility, cell-specific tropism, and unique ability to cross physiological barriers. In this review, we provide an overview of recent advances in the naturally occurring mRNA delivery platforms and their biomedical applications. Furthermore, the future perspectives on clinical translation of cell-derived vesicles have been discussed.

6.
Front Immunol ; 13: 955654, 2022.
Статья в английский | MEDLINE | ID: covidwho-2287159

Реферат

Patients with COVID-19 often have hypoxemia, impaired lung function, and abnormal imaging manifestations in acute and convalescent stages. Alveolar inflammation, pulmonary vasculitis, and thromboembolism synergistically damage the blood-air barrier, resulting in increased pulmonary permeability and gas exchange disorders. The incidence of low platelet counts correlates with disease severity. Platelets are also involved in the impairment of pulmonary microcirculation leading to abnormal lung function at different phases of COVID-19. Activated platelets lose the ability to protect the integrity of blood vessel walls, increasing the permeability of pulmonary microvasculature. High levels of platelet activation markers are observed in both mild and severe cases, short and long term. Therefore, the risk of thrombotic events may always be present. Vascular endothelial injury, immune cells, inflammatory mediators, and hypoxia participate in the high reactivity and aggregation of platelets in various ways. Microvesicles, phosphatidylserine (PS), platelets, and coagulation factors are closely related. The release of various cell-derived microvesicles can be detected in COVID-19 patients. In addition to providing a phospholipid surface for the synthesis of intrinsic factor Xase complex and prothrombinase complex, exposed PS also promotes the decryption of tissue factor (TF) which then promotes coagulant activity by complexing with factor VIIa to activate factor X. The treatment of COVID-19 hypercoagulability and thrombosis still focuses on early intervention. Antiplatelet therapy plays a role in relieving the disease, inhibiting the formation of the hypercoagulable state, reducing thrombotic events and mortality, and improving sequelae. PS can be another potential target for the inhibition of hypercoagulable states.


Тема - темы
COVID-19 , Coagulants , Thrombosis , Blood Coagulation Factors , Blood Platelets , Factor VIIa , Factor X , Humans , Inflammation Mediators , Intrinsic Factor , Lung , Microcirculation , Phosphatidylserines , Platelet Aggregation Inhibitors , Thromboplastin , Thrombosis/etiology
7.
Cancer Med ; 11(15): 2957-2968, 2022 08.
Статья в английский | MEDLINE | ID: covidwho-1981598

Реферат

BACKGROUND: Colorectal cancer (CRC) is the second cause of cancer death worldwide. The role of circulating microvesicles as a screening tool is a novel, yet effective approach that warrants prioritised research. METHODS: In a two-gate diagnostic accuracy study, 35 patients with benign colorectal polyps (BCRP) (n = 16) and colorectal cancer (CRC) (n = 19) were compared to 17 age-matched healthy controls. Total annexin-V positive microvesicles and sub-populations positive for selected biomarkers relevant to bowel neoplasm were evaluated in patients' plasma using flow cytometry. Statistical methods including factor analysis utilising two component factors were performed to obtain optimal diagnostic accuracy of microvesicles in identifying patients with colorectal neoplasms. RESULTS: Total plasma microvesicles, and sub-populations positive for CD31, CD42a, CD31+/CD42a-, EPHB2, ICAM and LGR5 (component factor-1) were able to identify patients with BCRP and CRC with a receiver operator curve (AUC) accuracy of a 100% (95% CI: 100%-100%) and 95% (95% CI: 88%-100%), respectively. To identify patients with BCRP, a cut-off point value of component factor-1761 microvesicles/µl demonstrated a 100% sensitivity, specificity and negative predictive value (NPV) and a 93% positive predictive value (PPV). To identify patients with CRC, a cut-off value of component factor-1 3 439 microvesicles/µl demonstrated a 100% sensitivity, specificity and NPV and a 65% PPV. CEA+ microvesicles sub-population were significantly (p < 0.02) higher in CRC in comparison to BCRP. CONCLUSIONS: Microvesicles as biomarkers for the early and accurate detection of CRC is a simple and effective tool that yields a potential breakthrough in clinical management.


Тема - темы
Colorectal Neoplasms , Neoplasm Proteins , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Biomarkers , Biomarkers, Tumor , Colorectal Neoplasms/diagnosis , Humans , Mass Screening
8.
Front Cell Dev Biol ; 9: 770463, 2021.
Статья в английский | MEDLINE | ID: covidwho-1979032

Реферат

Plasma concentrations of extracellular vesicles (EVs) originating from cells involved in COVID-19-associated coagulopathy (CAC), their longitudinal trend and association with clinical outcomes were evaluated. Blood samples of consecutive COVID-19 patients admitted to a medical Unit were longitudinally collected within 48 h of admission, at discharge and 30 days post-discharge. EVs were analyzed using high sensitivity flow cytometry and phospholipid-dependent clotting time (PPL). The following EVs were measured: endothelium-, platelet-, leukocyte-derived, bearing tissue factor (TF)+, angiotensin-converting enzyme (ACE2)+, platelet-derived growth factor receptor-ß (PDGF-ß)+ and SARS-CoV-2-nucleoprotein (NP)+. 91 patients were recruited for baseline EV analysis (mean age 67 ± 14 years, 50.5% male) and 48 underwent the longitudinal evaluation. From baseline to 30-days post-discharge, we observed significantly decreased plasma concentrations of endothelium-derived EVs (E-Selectin+), endothelium-derived bearing TF (E-Selectin+ TF+), endothelium-derived bearing ACE2 (E-Selectin+ACE2+) and leukocyte-EVs bearing TF (CD45+TF+), p < 0.001, p = 0.03, p = 0.001, p = 0.001, respectively. Conversely, platelet-derived (P-Selectin+) and leukocyte-derived EVs (CD45+) increased from baseline to 30-days post-discharge (p = 0.038 and 0.032, respectively). EVs TF+, ACE2+, PDGF-ß+, and SARS-CoV-2-NP+ did not significantly change during the monitoring. PPL increased from baseline to 30-days post-discharge (+ 6.3 s, p = 0.006). P-Selectin + EVs >1,054/µL were associated with thrombosis (p = 0.024), E-Selectin + EVs ≤531/µL with worsening/death (p 0.026) and 30-days P-Selectin+ and CD45 + EVs with persistent symptoms (p < 0.0001). We confirmed increased EVs originating from cells involved in CAC at admission and discharge. EVs derived from activated pericytes and expressing SARS-CoV-2-NP were also detected. 30-days post-discharge, endothelium-EVs decreased, while platelet- and leukocyte-EVs further increased, indicating that cellular activation persists long after the acute phase.

9.
Expert Opin Biol Ther ; 22(6): 747-762, 2022 06.
Статья в английский | MEDLINE | ID: covidwho-1956518

Реферат

INTRODUCTION: Extracellular vesicles (EV) released constitutively or following external stimuli from structural and immune cells are now recognized as important mediators of cell-to-cell communication. They are involved in the pathogenesis of pneumonia and sepsis, leading causes of acute respiratory distress syndrome (ARDS) where mortality rates remain up to 40%. Multiple investigators have demonstrated that one of the underlying mechanisms of the effects of EVs is through the transfer of EV content to host cells, resulting in apoptosis, inflammation, and permeability in target organs. AREAS COVERED: The current review focuses on preclinical research examining the role of EVs released into the plasma and injured alveolus during pneumonia and sepsis. EXPERT OPINION: Inflammation is associated with elevated levels of circulating EVs that are released by activated structural and immune cells and can have significant proinflammatory, procoagulant, and pro-permeability effects in critically ill patients with pneumonia and/or sepsis. However, clinical translation of the use of EVs as biomarkers or potential therapeutic targets may be limited by current methodologies used to identify and quantify EVs accurately (whether from host cells or infecting organisms) and lack of understanding of the role of EVs in the reparative phase during recovery from pneumonia and/or sepsis.


Тема - темы
Extracellular Vesicles , Pneumonia , Respiratory Distress Syndrome , Sepsis , Humans , Inflammation/pathology
10.
INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND ALLIED SCIENCES ; 11(2):110-119, 2022.
Статья в английский | Web of Science | ID: covidwho-1939780

Реферат

Microparticles (MPs) are vesicles of less than 1 mu m in diameter (submicron vesicles) shed from plasma membranes to cell activation, injury, and apoptosis response. They consisted of membrane proteins and cytosolic material from the cell they originated. These vesicles are vital mediators of pathological and physiological cellular processes. Polycystic ovary syndrome (PCOS) is a regular endocrine, menstrual and metabolic condition that affects 10-15% of females in their reproductive period. Numerous researches have described the association between low-grade chronic inflammation and PCOS;however, the relation is not well understood. Chronic lowgrade inflammation is reflected as a risk factor for cardiovascular disease, atherosclerosis, and endothelial dysfunction, and it is linked to abdominal obesity and insulin resistance (IR). MPs may be useful biomarkers for the early detection of cardiovascular disease and thrombosis in PCOS patients. In March 2020, the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) became pandemic, wreaking havoc on healthcare systems worldwide and the global economy. Obesity, diabetes, and cardiovascular disease have all been linked to COVID-19 increased risk of infection. PCOS patients have recently been identified as an underserved and potentially high-risk demographic for COVID-19 problems. This article tried to review and present recent studies that explored the role of microparticles in polycystic ovarian syndrome.

11.
Iran J Basic Med Sci ; 24(12): 1702-1708, 2021 Dec.
Статья в английский | MEDLINE | ID: covidwho-1934864

Реферат

Objectives: The present study aimed to determine whether bone marrow mesenchymal stem cell-derived microvesicles (MSC MVs) were effective in restoring lung tissue structure, and to assess the potential role of miRNAs in the pathogenesis and progression of acute respiratory distress syndrome (ARDS). Materials and Methods: ARDS was induced by lipopolysaccharide in male C57BL/6 mice. The degree of lung injury was assessed by histological analysis, lung's wet weight/body weight, and protein levels in the bronchoalveolar lavage fluid (BALF). Sequencing was performed on the BGISEQ-500 platform. Differentially expressed miRNAs (DEMs) were screened with the DEGseq software. The target genes of DEMs were predicted by iRNAhybrid, miRanda, and TargetScan. Results: Compared with LPS-injured mice, MSC MVs reduced lung water and total protein levels in the BALF, demonstrating a protective effect. 52 miRNAs were differentially expressed following treatment with MSC MVs in ARDS mice. Among them, miR-532-5p, miR-223-3p, and miR-744-5p were significantly regulated. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed the target genes were mainly located in the cell, organelle, and membrane. Furthermore, KEGG pathways such as ErbB, PI3K-Akt, Ras, MAPK, Toll, and Wnt signaling pathways were the most significant pathways enriched by the target genes. Conclusion: MSC MVs treatment was involved in alleviating lung injury and promoting lung tissue repair by dysregulated miRNAs.

12.
Stem Cells Transl Med ; 11(7): 675-687, 2022 07 20.
Статья в английский | MEDLINE | ID: covidwho-1908958

Реферат

BACKGROUND: Mesenchymal stromal cells (MSCs) may reduce mortality in patients with COVID-19; however, early evidence is based on few studies with marked interstudy heterogeneity. The second iteration of our living systematic review and meta-analysis evaluates a framework needed for synthesizing evidence from high-quality studies to accelerate consideration for approval. METHODS: A systematic search of the literature was conducted on November 15, 2021, to identify all English-language, full-text, and controlled clinical studies examining MSCs to treat COVID-19 (PROSPERO: CRD42021225431). FINDINGS: Eleven studies were identified (403 patients with severe and/or critical COVID-19, including 207 given MSCs and 196 controls). All 11 studies reported mortality and were pooled through random-effects meta-analysis. MSCs decreased relative risk of death at study endpoint (RR: 0.50 [95% CI, 0.34-0.75]) and RR of death at 28 days after treatment (0.19 [95% CI], 0.05-0.78) compared to controls. MSCs also decreased length of hospital stay (mean difference (MD: -3.97 days [95% CI, -6.09 to -1.85], n = 5 studies) and increased oxygenation levels at study endpoint compared to controls (MD: 105.62 mmHg O2 [95% CI, 73.9-137.3,], n = 3 studies). Only 2 of 11 studies reported on all International Society for Cellular Therapy (ISCT) criteria for MSC characterization. Included randomized controlled trials were found to have some concerns (n = 2) to low (n = 4) risk of bias (RoB), while all non-randomized studies were found to have moderate (n = 5) RoB. INTERPRETATION: Our updated living systematic review concludes that MSCs can likely reduce mortality in patients with severe or critical COVID-19. A master protocol based on our Faster Approval framework appears necessary to facilitate the more accelerated accumulation of high-quality evidence that would reduce RoB, improve consistency in product characterization, and standardize outcome reporting.


Тема - темы
COVID-19 , Mesenchymal Stem Cells , Bias , COVID-19/therapy , Humans , Lung , Randomized Controlled Trials as Topic
13.
Br J Haematol ; 198(2): 257-266, 2022 07.
Статья в английский | MEDLINE | ID: covidwho-1846193

Реферат

To slow down the coronavirus disease 2019 (COVID-19) pandemic an unequalled vaccination campaign was initiated. Despite proven efficacy and safety, a rare but potentially fatal complication of adenoviral-vector vaccines, called vaccine-induced immune thrombotic thrombocytopenia (VITT), has emerged the pathogenesis of which seems to be related to the development of platelet-activating anti-platelet factor 4 (PF4) antibodies. While a few studies have evaluated the incidence of anti-PF4 positivity in anti-severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccine recipients, to date no studies have assessed whether an antiplatelet immunological response develops and if this associates with platelet and blood clotting activation. We carried out a prospective study in healthy subjects who received the first dose of ChAdOx1 or Ad26.COV2.S or BNT162b2 vaccines to evaluate platelet-specific and non-specific immune response and in vivo platelet activation and blood clotting activation. Individuals receiving ChAdOx1 and, less so, Ad26.COV2.S developed with high frequency auto- or alloantiplatelet antibodies, increased circulating platelet-derived microvesicles and soluble P-selectin associated with mild blood clotting activation. Our study shows that an immunological reaction involving platelets is not uncommon in individuals receiving anti-SARS-CoV-2 vaccination, especially after ChAdOx1 and Ad26.COV2.S, and that it associates with in vivo platelet and blood clotting activation.


Тема - темы
Autoimmunity , COVID-19 Vaccines , COVID-19 , Platelet Activation , Thrombocytopenia , Ad26COVS1 , Adenoviridae , BNT162 Vaccine , Blood Coagulation , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Humans , Platelet Factor 4 , Prospective Studies , SARS-CoV-2 , Thrombocytopenia/chemically induced
14.
Infect Drug Resist ; 15: 2359-2368, 2022.
Статья в английский | MEDLINE | ID: covidwho-1833913

Реферат

Background: The hypercoagulability and thrombotic tendency in coronavirus disease 2019 (COVID-19) is multifactorial, driven mainly by inflammation, and endothelial dysfunction. Elevated levels of procoagulant microvesicles (MVs) and tissue factor-bearing microvesicles (TF-bearing MVs) have been observed in many diseases with thrombotic tendency. The current study aimed to measure the levels of procoagulant MVs and TF-bearing MVs in patients with COVID-19 and healthy controls and to correlate their levels with platelet counts, D-Dimer levels, and other proposed calculated inflammatory markers. Materials and Methods: Forty ICU-admitted patients with COVID-19 and 37 healthy controls were recruited in the study. Levels of procoagulant MVs and TF-bearing MVs in the plasma of the study population were measured using enzyme linked immunosorbent assay. Results: COVID-19 patients had significantly elevated levels of procoagulant MVs and TF-bearing MVs as compared with healthy controls (P<0.001). Procoagulant MVs significantly correlated with TF-bearing MVs, D-dimer levels, and platelet count, but not with calculated inflammatory markers (neutrophil/lymphocyte ratio, platelet/lymphocyte ratio, and platelet/neutrophil ratio). Conclusion: Elevated levels of procoagulant MVs and TF-bearing MVs in patients with COVID-19 are suggested to be (i) early potential markers to predict the severity of COVID-19 (ii) a novel circulatory biomarker to evaluate the procoagulant activity and severity of COVID-19.

15.
Int J Mol Sci ; 23(7)2022 Mar 30.
Статья в английский | MEDLINE | ID: covidwho-1785735

Реферат

Acute kidney injury (AKI) is a sudden decline of renal function and represents a global clinical problem due to an elevated morbidity and mortality. Despite many efforts, currently there are no treatments to halt this devastating condition. Extracellular vesicles (EVs) are nanoparticles secreted by various cell types in both physiological and pathological conditions. EVs can arise from distinct parts of the kidney and can mediate intercellular communication between various cell types along the nephron. Besides their potential as diagnostic tools, EVs have been proposed as powerful new tools for regenerative medicine and have been broadly studied as therapeutic mediators in different models of experimental AKI. In this review, we present an overview of the basic features and biological relevance of EVs, with an emphasis on their functional role in cell-to-cell communication in the kidney. We explore versatile roles of EVs in crucial pathophysiological mechanisms contributing to AKI and give a detailed description of the renoprotective effects of EVs from different origins in AKI. Finally, we explain known mechanisms of action of EVs in AKI and provide an outlook on the potential clinical translation of EVs in the setting of AKI.


Тема - темы
Acute Kidney Injury , Extracellular Vesicles , Mesenchymal Stem Cells , Acute Kidney Injury/pathology , Extracellular Vesicles/metabolism , Humans , Kidney/metabolism , Mesenchymal Stem Cells/metabolism
16.
Front Cell Dev Biol ; 10: 859863, 2022.
Статья в английский | MEDLINE | ID: covidwho-1775641

Реферат

Extracellular vesicles (EVs) being defined as lipid-bilayer encircled particles are released by almost all known mammalian cell types and represent a heterogenous set of cell fragments that are found in the blood circulation and all other known body fluids. The current nomenclature distinguishes mainly three forms: microvesicles, which are formed by budding from the plasma membrane; exosomes, which are released, when endosomes with intraluminal vesicles fuse with the plasma membrane; and apoptotic bodies representing fragments of apoptotic cells. Their importance for a great variety of biological processes became increasingly evident in the last decade when it was discovered that they contribute to intercellular communication by transferring nucleotides and proteins to recipient cells. In this review, we delineate several aspects of their isolation, purification, and analysis; and discuss some pitfalls that have to be considered therein. Further on, we describe various cellular sources of EVs and explain with different examples, how they link cancer and inflammatory conditions with thrombotic processes. In particular, we elaborate on the roles of EVs in cancer-associated thrombosis and COVID-19, representing two important paradigms, where local pathological processes have systemic effects in the whole organism at least in part via EVs. Finally, we also discuss possible developments of the field in the future and how EVs might be used as biomarkers for diagnosis, and as vehicles for therapeutics.

17.
Cytotherapy ; 24(6): 639-649, 2022 06.
Статья в английский | MEDLINE | ID: covidwho-1729893

Реферат

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) and their secreted products are a promising therapy for COVID-19 given their immunomodulatory and tissue repair capabilities. Many small studies were launched at the onset of the pandemic, and repeated meta-analysis is critical to obtain timely and sufficient statistical power to determine efficacy. METHODS AND FINDINGS: All English-language published studies identified in our systematic search (up to February 3, 2021) examining the use of MSC-derived products to treat patients with COVID-19 were identified. Risk of bias (RoB) was assessed for all studies. Nine studies were identified (189 patients), four of which were controlled (93 patients). Three of the controlled studies reported on mortality (primary analysis) and were pooled through random-effects meta-analysis. MSCs decreased the risk of death at study endpoint compared with controls (risk ratio, 0.18; 95% confidence interval [CI], 0.04 to 0.74; P = .02; I2 = 0%), although follow-up differed. Among secondary outcomes, interleukin-6 levels were most commonly reported and were decreased compared with controls (standardized mean difference, -0.69; 95% CI, -1.15 to -0.22; P = .004; I2 = 0%) (n = 3 studies). Other outcomes were not reported consistently, and pooled estimates of effect were not performed. Substantial heterogeneity was observed between studies in terms of study design. Adherence to published ISCT criteria for MSC characterization was low. In two of nine studies, RoB analysis revealed a low to moderate risk of bias in controlled studies, and uncontrolled case series were of good (3 studies) or fair (2 studies) quality. CONCLUSION: Use of MSCs to treat COVID-19 appears promising; however, few studies were identified, and potential risk of bias was detected in all studies. More controlled studies that report uniform clinical outcomes and use MSC products that meet standard ISCT criteria should be performed. Future iterations of our systematic search should refine estimates of efficacy and clarify potential adverse effects.


Тема - темы
COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , COVID-19/therapy , Humans , Mesenchymal Stem Cell Transplantation/methods , Pandemics , SARS-CoV-2
18.
Front Med Technol ; 2: 623950, 2020.
Статья в английский | MEDLINE | ID: covidwho-1639069

Реферат

Medical progress has historically depended on scientific discoveries. Until recently, science was driven by technological advancements that, once translated to the clinic, fostered new treatments and interventions. More recently, technology-driven medical progress has often outpaced laboratory research. For example, intravascular devices, pacemakers for the heart and brain, spinal cord stimulators, and surgical robots are used routinely to treat a variety of diseases. The rapid expansion of science into ever more advanced molecular and genetic mechanisms of disease has often distanced laboratory-based research from day-to-day clinical realities that remain based on evidence and outcomes. A recognized reason for this hiatus is the lack of laboratory tools that recapitulate the clinical reality faced by physicians and surgeons. To overcome this, the NIH and FDA have in the recent past joined forces to support the development of a "human-on-a-chip" that will allow research scientists to perform experiments on a realistic replica when testing the effectiveness of novel experimental therapies. The development of a "human-on-a-chip" rests on the capacity to grow in vitro various organs-on-a-chip, connected with appropriate vascular supplies and nerves, and our ability to measure and perform experiments on these virtually invisible organs. One of the tissue structures to be scaled down on a chip is the human blood-brain barrier. This review gives a historical perspective on in vitro models of the BBB and summarizes the most recent 3D models that attempt to fill the gap between research modeling and patient care. We also present a summary of how these in vitro models of the BBB can be applied to study human brain diseases and their treatments. We have chosen NeuroAIDS, COVID-19, multiple sclerosis, and Alzheimer's disease as examples of in vitro model application to neurological disorders. Major insight pertaining to these illnesses as a consequence of more profound understanding of the BBB can reveal new avenues for the development of diagnostics, more efficient therapies, and definitive clarity of disease etiology and pathological progression.

19.
Int J Mol Sci ; 22(24)2021 Dec 13.
Статья в английский | MEDLINE | ID: covidwho-1599176

Реферат

To determine whether mitigating the harmful effects of circulating microvesicle-associated inducible nitric oxide (MV-A iNOS) in vivo increases the survival of challenged mice in three different mouse models of sepsis, the ability of anti-MV-A iNOS monoclonal antibodies (mAbs) to rescue challenged mice was assessed using three different mouse models of sepsis. The vivarium of a research laboratory Balb/c mice were challenged with an LD80 dose of either lipopolysaccharide (LPS/endotoxin), TNFα, or MV-A iNOS and then treated at various times after the challenge with saline as control or with an anti-MV-A iNOS mAb as a potential immunotherapeutic to treat sepsis. Each group of mice was checked daily for survivors, and Kaplan-Meier survival curves were constructed. Five different murine anti-MV-A iNOS mAbs from our panel of 24 murine anti-MV-A iNOS mAbs were found to rescue some of the challenged mice. All five murine mAbs were used to genetically engineer humanized anti-MV-A iNOS mAbs by inserting the murine complementarity-determining regions (CDRs) into a human IgG1,kappa scaffold and expressing the humanized mAbs in CHO cells. Three humanized anti-MV-A iNOS mAbs were effective at rescuing mice from sepsis in three different animal models of sepsis. The effectiveness of the treatment was both time- and dose-dependent. Humanized anti-MV-A iNOS rHJ mAb could rescue up to 80% of the challenged animals if administered early and at a high dose. Our conclusions are that MV-A iNOS is a novel therapeutic target to treat sepsis; anti-MV-A iNOS mAbs can mitigate the harmful effects of MV-A iNOS; the neutralizing mAb's efficacy is both time- and dose-dependent; and a specifically targeted immunotherapeutic for MV-A iNOS could potentially save tens of thousands of lives annually and could result in improved antibiotic stewardship.


Тема - темы
Cell-Derived Microparticles/metabolism , Nitric Oxide Synthase Type II/metabolism , Sepsis/therapy , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Cell-Derived Microparticles/immunology , Disease Models, Animal , Humans , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred BALB C , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/antagonists & inhibitors , Nitric Oxide Synthase Type II/immunology , Tumor Necrosis Factor-alpha/pharmacology
20.
Journal of Research in Medical and Dental Science ; 9(11):14-20, 2021.
Статья в английский | Web of Science | ID: covidwho-1576500

Реферат

The term corona virus (Latin: Corona, crown) is coined due to presence of spikes glycoproteins on the surface that gives it a crown-like appearance. Coronaviruses came from the family Coronaviridae and the order Nidovirales. Novel Corona Virus Disease outbreak happened in January 2020 subsequently dispersed around the world and reason for death of several million people worldwide. Currently, no effective treatment for severe COVID-19 patients is present. Now days, patients are only treated symptomatically. Scientific community working to develop novel antiviral drugs, vaccines, immunomodulatory medications. In the recent scenario of COVID-19 pandemic, we lack any better therapeutic option for treatment of severe COVID-19 patients. MSCs may be a better option for providing emergency therapy. Vast number of studies and clinical trials are warranted regarding the safety and efficacy stem cell therapy in COVID-19 and other respiratory disorders.

Критерии поиска